新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   >>中国XML论坛<<     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> 本版讨论Semantic Web(语义Web,语义网或语义万维网, Web 3.0)及相关理论,如:Ontology(本体,本体论), OWL(Web Ontology Langauge,Web本体语言), Description Logic(DL, 描述逻辑),RDFa,Ontology Engineering等。
    [返回] 中文XML论坛 - 专业的XML技术讨论区W3CHINA.ORG讨论区 - Web新技术讨论『 Semantic Web(语义Web)/描述逻辑/本体 』 → 何谓“一阶谓词逻辑”? 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 7850 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: 何谓“一阶谓词逻辑”? 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     cameo 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:3
      积分:61
      注册:2003/12/14

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给cameo发送一个短消息 把cameo加入好友 查看cameo的个人资料 搜索cameo在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 引用回复这个贴子 回复这个贴子 查看cameo的博客楼主
    发贴心情 何谓“一阶谓词逻辑”?

    如题

       收藏   分享  
    顶(0)
      




    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/1/5 9:26:00
     
     ttcan 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:2
      积分:62
      门派:XML.ORG.CN
      注册:2004/5/18

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给ttcan发送一个短消息 把ttcan加入好友 查看ttcan的个人资料 搜索ttcan在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 引用回复这个贴子 回复这个贴子 查看ttcan的博客2
    发贴心情 
    是否是指量词只能作用于变元而非谓词和函数的谓词逻辑?
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/5/18 16:46:00
     
     orangebench 帅哥哟,离线,有人找我吗?
      
      
      
      威望:9
      等级:研一(参加了一年一度的XML大会)(版主)
      文章:681
      积分:4761
      门派:W3CHINA.ORG
      注册:2004/5/28

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给orangebench发送一个短消息 把orangebench加入好友 查看orangebench的个人资料 搜索orangebench在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 访问orangebench的主页 引用回复这个贴子 回复这个贴子 查看orangebench的博客3
    发贴心情 
    What counts as first order?
             ----pat hayes

    First, there is no such thing as the 'correct' or 'classical' or 'normal' first-order logic. There are probably as many variations of first-order logic as there are logicians, and among the dozens, perhaps hundreds, of logic textbooks that have been published almost no two use exactly the same logical system. The syntax can be written in a large variety of ways (infix, prefix, postfix; graphically like Peirce or like Frege; etc.); there are many widely different notions of first-order proofs (natural deduction systems, Gentzen tablaux, resolution-style proof systems, etc.) and there are even several semantic options. Some versions allow function symbols, others not; some use few connectives, some use only one, others allow many; and so on. I emphasize this rather elementary point only to provide some pre-emptive answer to the frequently heard complaint that any new idea violates the norms of 'normal' first-order logic. Of course all these varieties are profoundly alike in a certain sense (modulo a few well-known distinctions, such as the presence or absence of equality) but the issue we need to face is, how best to characterize this common quality? What makes a logic first-order?

    One kind of answer, the one most often found in elementary textbooks, is purely syntactic. It characterizes first-order languages by their conformity to a kind of syntactic layering: there are individual symbols and relation symbols, and a language is first-order if it respects this layering by keeping these categories distinct and only allowing quantification over the individuals. In contrast, higher-order languages (which are well known to be less tractable in many ways) have a syntax which blurs or even eliminates this distinction by allowing relations to hold betwen other relations and allowing quantification over relations. On this view, then, the essentially first-order nature of FOL is essentially a syntactic restriction. This has the merit of being very easy to state and trivial to check. However, it misses the essential point.

    Another kind of answer would be semantic: a language is first-order if it has a conventional Tarskian model theory in which individual names denote things in the universe and relation names denote relations over the universe. This is better, but it ignores the fact that one can give such a semantics to a notation which most people would consider non-first-order, such as type theory.

    I wish to suggest a different answer, based on the relationship between the semantic and proof-theoretic qualities of the language. The reason why FOL plays such a central role in the foundations of mathematics and in knowledge representation is not because of a simple syntactic restriction. FOL has a fundamental logical character which make it in a sense into the canonical computational representational logic: it is the strongest possible relational logic which is both complete and compact. Relational means that the logic mentions entities and relations between them. Completeness means that proof theory and the semantics are in correspondence. Without this, of course, one could erect all kinds of semantic fantasies but they would have no bearing on the actual proofs that could be obtained. Compactness means that proofs can only use finite resources. Any conclusion from an infinite set of assumptions must be finitely derivable from some finite subset of them. This means that proofs are things that can actually be implemented and constructed by mortal people and physical machines.

    ----------------------------------------------
    Semantic Web is a dream; Semantic Web technology is 
    the reality.
    Weblog: http://blog.w3china.org/~orangebench/

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/6/25 4:06:00
     
     lyf5 帅哥哟,离线,有人找我吗?
      
      
      等级:大一(高数修炼中)
      文章:28
      积分:170
      门派:XML.ORG.CN
      注册:2004/6/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给lyf5发送一个短消息 把lyf5加入好友 查看lyf5的个人资料 搜索lyf5在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 引用回复这个贴子 回复这个贴子 查看lyf5的博客4
    发贴心情 
    我认为,first-order Predicate logic 并不是指含有一个变元的的谓词逻辑。
    比如说P(x,y)这个谓词,它含有两个变元,但如果存在量词或全称量词只作用于个体变元的话,比如说对于所有的x,都至少存在一个y使得p成立,这个命题依然是一阶的。
    而高阶逻辑因该是指量词的作用范围超过了个体变元,作用到了谓词本身,就好像复合函数的味道,比如f(g(x))。

    所以我认为,first-order logic 应该是指量词的作用范围仅仅在个体变元上。而不是更高的层

    欢迎指教

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/7/8 14:46:00
     
     admin 帅哥哟,离线,有人找我吗?
      
      
      
      威望:9
      头衔:W3China站长
      等级:计算机硕士学位(管理员)
      文章:5255
      积分:18407
      门派:W3CHINA.ORG
      注册:2003/10/5

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给admin发送一个短消息 把admin加入好友 查看admin的个人资料 搜索admin在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 点击这里发送电邮给admin  访问admin的主页 引用回复这个贴子 回复这个贴子 查看admin的博客5
    发贴心情 
    谢谢更正。。我说错了。。

    ----------------------------------------------

    -----------------------------------------------

    第十二章第一节《用ROR创建面向资源的服务》
    第十二章第二节《用Restlet创建面向资源的服务》
    第三章《REST式服务有什么不同》
    InfoQ SOA首席编辑胡键评《RESTful Web Services中文版》
    [InfoQ文章]解答有关REST的十点疑惑

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/7/8 15:12:00
     
     orangebench 帅哥哟,离线,有人找我吗?
      
      
      
      威望:9
      等级:研一(参加了一年一度的XML大会)(版主)
      文章:681
      积分:4761
      门派:W3CHINA.ORG
      注册:2004/5/28

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给orangebench发送一个短消息 把orangebench加入好友 查看orangebench的个人资料 搜索orangebench在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 访问orangebench的主页 引用回复这个贴子 回复这个贴子 查看orangebench的博客6
    发贴心情 
    复合函数 是属于一价逻辑的哦,你的例子不太合适 ;-)

    按Pat Hayes的说法,一价逻辑 有多种说法:
    1)从语法层次:
    “there are individual symbols and relation symbols, and a language is first-order if it respects this layering by keeping these categories distinct and only allowing quantification over the individuals.”
    即 如lyf5 所说,量词的作用范围仅仅在个体变元上。
    2)从语义层次:
    “ language is first-order if it has a conventional Tarskian model theory in which individual names denote things in the universe and relation names denote relations over the universe.“
    即必须遵循Tarskian模型论语义,所以,RDF不是一价逻辑
    3)语义和证明论的关系:
    “based on the relationship between the semantic and proof-theoretic qualities of the language”
    太高深了,我也不懂。

    以下是引用lyf5在2004-7-8 14:46:49的发言:
    我认为,first-order Predicate logic 并不是指含有一个变元的的谓词逻辑。
    比如说P(x,y)这个谓词,它含有两个变元,但如果存在量词或全称量词只作用于个体变元的话,比如说对于所有的x,都至少存在一个y使得p成立,这个命题依然是一阶的。
    而高阶逻辑因该是指量词的作用范围超过了个体变元,作用到了谓词本身,就好像复合函数的味道,比如f(g(x))。

    所以我认为,first-order logic 应该是指量词的作用范围仅仅在个体变元上。而不是更高的层

    欢迎指教


    ----------------------------------------------
    Semantic Web is a dream; Semantic Web technology is 
    the reality.
    Weblog: http://blog.w3china.org/~orangebench/

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/7/8 15:28:00
     
     lyf5 帅哥哟,离线,有人找我吗?
      
      
      等级:大一(高数修炼中)
      文章:28
      积分:170
      门派:XML.ORG.CN
      注册:2004/6/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给lyf5发送一个短消息 把lyf5加入好友 查看lyf5的个人资料 搜索lyf5在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 引用回复这个贴子 回复这个贴子 查看lyf5的博客7
    发贴心情 
    orangebench:我认为我的比方没有大的问题呀!
    对于f(g(x))来讲,如果把x当作个体变元,则g(x)就是谓词,而f(g(x))也就是谓词的函数了。
    这样:如果将量词作用在变元上,即存在或对于所有的x,g(x)会怎么怎么样,那就是一阶谓词。如果将量词作用在谓词上,即存在或对于所有的g(x),f(g(x))会怎么怎么样,那就是二阶谓词了。
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/7/8 19:01:00
     
     orangebench 帅哥哟,离线,有人找我吗?
      
      
      
      威望:9
      等级:研一(参加了一年一度的XML大会)(版主)
      文章:681
      积分:4761
      门派:W3CHINA.ORG
      注册:2004/5/28

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给orangebench发送一个短消息 把orangebench加入好友 查看orangebench的个人资料 搜索orangebench在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 访问orangebench的主页 引用回复这个贴子 回复这个贴子 查看orangebench的博客8
    发贴心情 
    对不起,我没完全看清楚你的原贴,因为你说复合函数,我把f,g 都理解为函数了,这样
    f(g(x))就是一价逻辑的了。

    ----------------------------------------------
    Semantic Web is a dream; Semantic Web technology is 
    the reality.
    Weblog: http://blog.w3china.org/~orangebench/

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2004/7/9 0:24:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 Semantic Web(语义Web)/描述逻辑/本体 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/6/22 0:04:08

    本主题贴数8,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    109.009ms